CALL FOR PAPERS Computational Analyses in Ion Channelopathies In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes

نویسندگان

  • Stefania Vecchietti
  • Eleonora Grandi
  • Stefano Severi
  • Ilaria Rivolta
  • Carlo Napolitano
  • Silvia G. Priori
  • Silvio Cavalcanti
چکیده

Vecchietti S, Grandi E, Severi S, Rivolta I, Napolitano C, Priori SG, Cavalcanti S. In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes. Am J Physiol Heart Circ Physiol 292: H56–H65, 2007. First published September 15, 2006; doi:10.1152/ajpheart.00270.2006.—The effects of two SCN5A mutations (Y1795C, Y1795H), previously identified in one Long QT syndrome type 3 (LQT3) and one Brugada syndrome (BrS) families, were investigated by means of numerical modeling of ventricular action potential (AP). A Markov model capable of reproducing a wild-type as well as a mutant sodium current (INa) was identified and was included into the Luo-Rudy ventricular cell model for action potential (AP) simulation. The characteristics of endocardial, midmyocardial, and epicardial cells were reproduced by differentiating the transient outward current (ITO) and the ratio of slow delayed rectifier potassium (IKs) to rapid delayed rectifier current (IKr). Administration of flecainide and mexiletine was simulated by appropriately modifying INa, calcium current (ICa), ITO, and IKr. Y1795C prolonged AP in a rate-dependent manner, and early afterdepolarizations (EADs) appeared during bradycardia in epicardial and midmyocardial cells; flecainide and mexiletine shortened AP and abolished EADs. Y1795H resulted in minimal changes in the APs; flecainide but not mexiletine induced APs heterogeneity across the ventricular wall that accounts for the ST segment elevation induced by flecainide in Y1795H carriers. The AP abnormalities induced by Y1795H and Y1795C can explain the clinically observed surface ECG phenotype. For the first time by modeling the effects of flecainide and mexiletine, we are able to gather mechanistic insights on the response to drugs administration observed in affected patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico assessment of Y1795C and Y1795H SCN5A mutations: implication for inherited arrhythmogenic syndromes.

The effects of two SCN5A mutations (Y1795C, Y1795H), previously identified in one Long QT syndrome type 3 (LQT3) and one Brugada syndrome (BrS) families, were investigated by means of numerical modeling of ventricular action potential (AP). A Markov model capable of reproducing a wild-type as well as a mutant sodium current (I(Na)) was identified and was included into the Luo-Rudy ventricular c...

متن کامل

Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes.

Defects of the SCN5A gene encoding the cardiac sodium channel alpha-subunit are associated with both the long QT-3 (LQT-3) subtype of long-QT syndrome and Brugada syndrome (BrS). One previously described SCN5A mutation (1795insD) in the C terminus results in a clinical phenotype combining QT prolongation and ST segment elevation, indicating a close interrelationship between the two disorders. H...

متن کامل

Markovian Model for Wild-Type and Mutant (Y1795C and Y1795H) Human Cardiac Na

Long QT syndrome (LQTS) and Brugada syndrome (BrS) are inherited syndromes predisposing to ventricular arrhythmias and sudden death. Emerging evidences related LQTS and BrS to dysfunctions of cardiac ion channels. Recently, two novel missense mutations in gene encoding for the cardiac Na channel have been identified (Y1795C for LQTS and Y1795H for BrS). Both mutations alter inactivation, interm...

متن کامل

Sudden cardiac death and inherited channelopathy: the basic electrophysiology of the myocyte and myocardium in ion channel disease

Mutations involving cardiac ion channels result in abnormal action potential formation or propagation, leading to cardiac arrhythmias. Despite the large impact on society of sudden cardiac death resulting from such arrhythmias, understanding of the underlying cellular mechanism is poor and clinical risk stratification and treatment consequently limited. Basic research using molecular techniques...

متن کامل

The electrocardiographic abnormalities in highly trained athletes compared to the genetic study related to causes of unexpected sudden cardiac death

BACKGROUND Electrocardiograms in elite endurance athletes sometimes show bizarre patterns suggestive of inherited channelopathies (Brugada syndrome, long QTc, catecholaminergic polymorphic ventricular tachycardia) and cardiomyopathies (arrhythmogenic right ventricular cardiomyopathy, hypertrophic cardiomyopathy) responsible for unexpected sudden cardiac death. Among other methods, genetic analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006